Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series LLC LTD Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series LLC LTD : World’s leading Event Organizer


13th Biotechnology Congress

San Francisco, USA

Nivedita Lal

Jamia Hamdard, India

Title: Deep sequencing of root endophyte Piriformospora indica grown under salt stress


Biography: Nivedita Lal


Background: Piriformospora indica , a filamentous fungus of the order Sebacinales, is able to make symbiotic interaction with root of different plant species and provides better growth and higher yield to the host plant as well as resistance against biotic and abiotic stresses. High soil salinity, excess of NaCl, is one of the important environmental factors that limits distribution and productivity of major crops. The need to produce crops with enhanced tolerance to salt stress has been the stimulus for research. P. indica-mediated salt tolerance mechanism was found to be linked strongly with increase in antioxidants under salt stress in barley which attenuates the NaCl-induced lipid peroxidation, metabolic heat efflux, and fatty acid desaturation in barley leaves. Salt stress studies have indicated promising effect of P. indica in barley. Therefore, it is vital to isolate and functionally characterize salinity stress-related genes to elucidate the mechanisms underlying halotolerance and develop salinity stress-tolerant plants.

Observations: We have compared the transcriptome of P. indica growing under high salt conditions (0.5 M NaCl) with salt free conditions as a control. Approximately 30‐40 million 76bp paired-end reads per sample were obtained using an Illumina NextSeq500. RNA-seq analysis was performed using Bowtie/TopHat/Cufflinks software pipeline. Total 15410 unigenes were generated with n50 value of 3038. A total of 13461 differentially expressed genes (fold change ≧ 2) were identified and 2646 genes were downregulated while 2446 genes were upregulated under high salt condition. We found that the genes involved in different cellular processes,such as metabolism, energy and biosynthetic processes, DNA repair, regulation of protein turnover, transport and saltstress tolerance were changed under high salt condition.

Conclusions: RNA-seq and pathway analyses found that salt stressed P. indica have significant differences in gene expression. Our results showed the complex mechanism of P. indica adaption to salt stress and it was a systematic work for endophyte to cope with the high salinity environmental problems. Thus, these results could be helpful for further investigation of the salt resistance mechanism in microbes.