Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series LLC LTD Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series LLC LTD : World’s leading Event Organizer

Back

17th Euro Biotechnology Congress

Berlin, Germany

Xinyue Zhao

Xinyue Zhao

Harbin Institute of Technology, China

Title: Atrazine degradation by Arthrobacter sp. ZXY-2: Kinetics, pathway, gene expression response and genomic characterization

Biography

Biography: Xinyue Zhao

Abstract

Isolation of atrazine-degrading microorganisms with specific characteristics is significant for the bio-augmentation to deal with atrazine wastewater. However, lacking the investigation of specific characteristics will hinder the further understanding of bio-augmentation. A strain Arthrobacter sp. ZXY-2 with strong capacity of atrazine degradation has been isolated and suggested a potential candidate for bio-augmentation. In this study, we identified the factors that might be relevant to the biodegradation capacity of strain ZXY-2, and reveal how these factors might contribute to the future understanding of bio-augmentation. The growth pattern of strain ZXY-2 followed Haldane-Andrew model with the inhibition constant (Ki) of 52.76 mg/L obtained, indicating that the strain ZXY-2 offered a possibility of bio-augmenting wastewater with the concentration of atrazine below 52.76 mg/L. The Real-time quantitative PCR (RT-qPCR) results showed a positive correlation between atrazine degradation and the expression levels of functional genes (trzN, atzB and atzC), which provided a basis data that could help to distinguish the role strain ZXY-2 played in the bio-augmentation. Moreover, the multiple copies of atzB gene, found via genome sequencing, might account for the highest expression levels among three genes. Meanwhile, the multiple copies of atzB gene might also provide a compensation mechanism to ensure the smooth work of strain ZXY-2 in future bio-augmentation.